However, the more E/E architecture and vehicle architecture evolve, the more attractive it becomes to eliminate this inflexible “one-box arrangement”. A first step, for example, could be to no longer actuate the brakes hydraulically on the rear axle, because hydraulics have a disadvantage: The fluid has to be changed and disposed of regularly – which is not environmentally sustainable. Moreover, if the brakes were actuated electromechanically, installation of the rear axle would be simplified because rigid hydraulic lines could be dispensed with. At the same time, the hydraulics on the front axle would still be available as a fallback system.
If the rear axle wheel brakes are operated electromechanically, i.e., “dry”, this could be utilized regeneratively, for example for systematic energy recuperation at the rear axle during each braking operation. Once the rear axle brakes become independent of the hydraulic system, they provide the ideal conditions for this. This would require a certain degree of “intelligence” in the brake system. This decentralization and “breaking-up” of the conventional architecture would further increase the degree of freedom for vehicle architectures.